Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis.
نویسندگان
چکیده
Proteus mirabilis alternates between motile and adherent forms. MrpJ, a transcriptional regulator previously reported to repress motility, is encoded at the 3' end of the mrp fimbrial operon in P. mirabilis. Sequencing of the P. mirabilis genome revealed 14 additional paralogues of mrpJ, 10 of which are associated with fimbrial operons. Twelve of these genes, when overexpressed, repressed motility; several distinct patterns of swarming motility were noted. Expression of 10 of the 14 mrpJ paralogues repressed flagellin (FlaA) synthesis. Alignment of the predicted amino acid sequences of MrpJ and its 14 paralogues revealed a conserved consensus motif (SQQQFSRYE) within the helix-turn-helix domain. Site-directed mutagenesis of these residues coupled with linker insertion mutagenesis of MrpJ confirmed the importance of this domain for repression of motility. Gel shift assays demonstrated that MrpJ and another paralogue UcaJ bind directly to the promoter region of the flagellar master regulator flhDC. Thus, P. mirabilis appears to use a related mechanism to inhibit motility during the production of at least 10 of its predicted fimbriae.
منابع مشابه
PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli.
Motility and adherence are two integral aspects of bacterial pathogenesis. Adherence, often mediated by fimbriae, permits bacteria to attach to host cells and establish infection, whereas flagellum-driven motility allows bacteria to disseminate to sites more advantageous for colonization. Both fimbriae and flagella have been proven important for virulence of uropathogenic Escherichia coli (UPEC...
متن کاملRequirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis.
Two new genes, mrpH and mrpJ, were identified downstream of mrpG in the mrp gene cluster encoding mannose-resistant Proteus-like (MR/P) fimbriae of uropathogenic Proteus mirabilis. Since the predicted MrpH has 30% amino acid sequence identity to PapG, the Galalpha(1-4)Gal-binding adhesin of Escherichia coli P fimbriae, we hypothesized that mrpH encodes the functional MR/P hemagglutinin. MR/P fi...
متن کاملProteus mirabilis MR/P fimbriae: molecular cloning, expression, and nucleotide sequence of the major fimbrial subunit gene.
Proteus mirabilis, a cause of serious urinary tract infection and acute pyelonephritis, produces several putative virulence determinants, among them, fimbriae. Principally, two fimbrial types are produced by this species: mannose-resistant/Proteus-like (MR/P) fimbriae and mannose-resistant/Klebsiella-like (MR/K) fimbriae. To isolate MR/P fimbrial gene sequences, a P. mirabilis cosmid library wa...
متن کاملProteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression.
Proteus mirabilis, an agent of urinary tract infection, expresses at least four fimbrial types. Among these are the MR/P (mannose-resistant/Proteus-like) fimbriae. MrpA, the structural subunit, is optimally expressed at 37 degrees C in Luria broth cultured statically for 48 h by each of seven strains examined. Genes encoding this fimbria were isolated, and the complete nucleotide sequence was d...
متن کاملبررسی وجود باند ژن rsbA و تاثیر اسید میریستیک در بیماری زایی پروتئوس میرابیلیس جدا شده از عفونت های ادراری
Abstract Introduction: Bacteria communicate with each other by using molecular chemical signal, which are called autoinducer. By the increase of concentration of these signals, which is the result of increase cellular density, they coordinate gene expression in a microbial community. This process is called Quorum sensing. Considering the importance of urine tract infections prominent role of Qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 69 2 شماره
صفحات -
تاریخ انتشار 2008